论文标题
自动评估和分析神经机器翻译中的成语
Automatic Evaluation and Analysis of Idioms in Neural Machine Translation
论文作者
论文摘要
神经机器翻译(NMT)的一个主要开放问题是惯用表达式的翻译,例如“天气下”。这些表达的含义不是由其组成词的含义所构成的,而NMT模型倾向于以字面意义(即单词逐字)翻译它们,这会导致混乱且荒谬的翻译。关于NMT中成语的研究受到限制,并且由于缺乏量化这些错误的自动方法而阻碍。在这项工作中,首先,我们提出了一个新颖的指标,用于自动测量不参与的文字翻译误差的频率。配备了此指标,我们提供了受控的翻译实验,并在不同条件下(有/没有测试习惯)训练的模型以及跨越(全局和目标的)指标和测试集的模型。我们探讨了单语言预处理的作用,并发现即使没有观察到测试集成语的任何翻译示例,它也会产生实质性的靶向改进。在我们的分析中,我们探究了成语上下文的作用。我们发现随机初始化的模型更具本地性或“近视”,因为与审计的模型相对不受成语上下文的变化影响。
A major open problem in neural machine translation (NMT) is the translation of idiomatic expressions, such as "under the weather". The meaning of these expressions is not composed by the meaning of their constituent words, and NMT models tend to translate them literally (i.e., word-by-word), which leads to confusing and nonsensical translations. Research on idioms in NMT is limited and obstructed by the absence of automatic methods for quantifying these errors. In this work, first, we propose a novel metric for automatically measuring the frequency of literal translation errors without human involvement. Equipped with this metric, we present controlled translation experiments with models trained in different conditions (with/without the test-set idioms) and across a wide range of (global and targeted) metrics and test sets. We explore the role of monolingual pretraining and find that it yields substantial targeted improvements, even without observing any translation examples of the test-set idioms. In our analysis, we probe the role of idiom context. We find that the randomly initialized models are more local or "myopic" as they are relatively unaffected by variations of the idiom context, unlike the pretrained ones.