论文标题

基于原型的一致性正则化的半监督语义分割

Semi-supervised Semantic Segmentation with Prototype-based Consistency Regularization

论文作者

Xu, Hai-Ming, Liu, Lingqiao, Bian, Qiuchen, Yang, Zhen

论文摘要

半监督的语义分割要求该模型有效地传播有限注释图像到未标记图像的标签信息。这样的人均预测任务的一个挑战是较大的类内变化,即属于同一类的区域,即使在同一图片中,属于同一类的区域也可能显示出截然不同的外观。这种多样性将使标签从像素到像素的繁殖力很强。为了解决这个问题,我们提出了一种新颖的方法,以使课堂内特征的分布正常,以减轻标签传播难度。具体而言,我们的方法鼓励了线性预测变量的预测与基于原型的预测变量的预测之间的一致性,该预测指标隐含地鼓励来自同一伪级的特征,即接近至少一个课堂原型,而远离其他类型的原型。通过进一步纳入CutMix操作和精心设计的原型维护策略,我们创建了一种半监督的语义分割算法,该算法表明,对Pascal VOC和CityScapes基准的广泛实验评估,表现出优于最先进的方法。

Semi-supervised semantic segmentation requires the model to effectively propagate the label information from limited annotated images to unlabeled ones. A challenge for such a per-pixel prediction task is the large intra-class variation, i.e., regions belonging to the same class may exhibit a very different appearance even in the same picture. This diversity will make the label propagation hard from pixels to pixels. To address this problem, we propose a novel approach to regularize the distribution of within-class features to ease label propagation difficulty. Specifically, our approach encourages the consistency between the prediction from a linear predictor and the output from a prototype-based predictor, which implicitly encourages features from the same pseudo-class to be close to at least one within-class prototype while staying far from the other between-class prototypes. By further incorporating CutMix operations and a carefully-designed prototype maintenance strategy, we create a semi-supervised semantic segmentation algorithm that demonstrates superior performance over the state-of-the-art methods from extensive experimental evaluation on both Pascal VOC and Cityscapes benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源