论文标题

COOPHASH:通过各种MCMC教学的多功能描述符和对比对生成器的合作学习,以进行监督图像哈希

CoopHash: Cooperative Learning of Multipurpose Descriptor and Contrastive Pair Generator via Variational MCMC Teaching for Supervised Image Hashing

论文作者

Doan, Khoa D., Xie, Jianwen, Zhu, Yaxuan, Zhao, Yang, Li, Ping

论文摘要

利用监督信息可以导致图像散列域的出色检索性能,但是在没有足够标记的数据的情况下,性能会大大降低。提高性能的一种有效解决方案是采用生成模型,例如生成对抗网络(GAN),以在图像哈希模型中生成合成数据。但是,基于GAN的方法很难训练,从而阻止了哈希方法共同训练生成模型和哈希功能。此限制会导致优化的检索性能。为了克服这一限制,我们提出了一个新型框架,即生成合作的哈希网络,该网络基于基于能量的合作学习。该框架共同学习了数据的强大生成性表示,并通过两个组件:自上而下的对比对生成器综合了对比度图像和自下而上的多功能描述符,同时从多个角度代表图像,包括概率密度,哈希代码,潜在的代码和类别。这两个组成部分是通过新颖的基于可能性的合作学习方案共同学习的。我们对几个现实世界数据集进行了实验,并表明所提出的方法的表现优于竞争性的散列监督方法,比当前最新监督的哈希方法实现了高达10 \%的相对改善,并且在过分分发检索中表现出更好的表现。

Leveraging supervised information can lead to superior retrieval performance in the image hashing domain but the performance degrades significantly without enough labeled data. One effective solution to boost performance is to employ generative models, such as Generative Adversarial Networks (GANs), to generate synthetic data in an image hashing model. However, GAN-based methods are difficult to train, which prevents the hashing approaches from jointly training the generative models and the hash functions. This limitation results in sub-optimal retrieval performance. To overcome this limitation, we propose a novel framework, the generative cooperative hashing network, which is based on energy-based cooperative learning. This framework jointly learns a powerful generative representation of the data and a robust hash function via two components: a top-down contrastive pair generator that synthesizes contrastive images and a bottom-up multipurpose descriptor that simultaneously represents the images from multiple perspectives, including probability density, hash code, latent code, and category. The two components are jointly learned via a novel likelihood-based cooperative learning scheme. We conduct experiments on several real-world datasets and show that the proposed method outperforms the competing hashing supervised methods, achieving up to 10\% relative improvement over the current state-of-the-art supervised hashing methods, and exhibits a significantly better performance in out-of-distribution retrieval.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源