论文标题
基于设定分析的神经网络的安全验证
Safety Verification for Neural Networks Based on Set-boundary Analysis
论文作者
论文摘要
神经网络(NNS)越来越多地应用于自动驾驶汽车等安全至关重要系统中。但是,它们是脆弱的,常常是行为不良的。因此,他们的行为应在实践部署前进行严格的保证。在本文中,我们提出了一种固定的可及性方法,以从拓扑角度研究NNS的安全验证问题。给定带有输入集和安全集的NN,安全验证问题是确定输入集产生的NN的所有输出是否属于安全集内。在我们的方法中,NNS的同构属性主要是利用的,该属性建立了与边界的关系映射边界。通过提取输入集的子集而不是整个输入集,对此属性的开发有助于可及性计算,从而控制了可及性分析中的包装效果,并促进了减少计算负担以进行安全验证。同构属性存在于一些广泛使用的NN,例如可逆NNS。值得注意的表示是可逆的残留网络(I-RESNET)和神经普通微分方程(神经ODES)。对于这些NN,我们的设置可及性方法只需要在输入集的边界上执行可及性分析。对于不具有此属性相对于输入集的NN,我们探索用于建立本地同构属性的输入集的子集,然后放弃这些子集以进行可及性计算。最后,一些示例证明了所提出的方法的性能。
Neural networks (NNs) are increasingly applied in safety-critical systems such as autonomous vehicles. However, they are fragile and are often ill-behaved. Consequently, their behaviors should undergo rigorous guarantees before deployment in practice. In this paper we propose a set-boundary reachability method to investigate the safety verification problem of NNs from a topological perspective. Given an NN with an input set and a safe set, the safety verification problem is to determine whether all outputs of the NN resulting from the input set fall within the safe set. In our method, the homeomorphism property of NNs is mainly exploited, which establishes a relationship mapping boundaries to boundaries. The exploitation of this property facilitates reachability computations via extracting subsets of the input set rather than the entire input set, thus controlling the wrapping effect in reachability analysis and facilitating the reduction of computation burdens for safety verification. The homeomorphism property exists in some widely used NNs such as invertible NNs. Notable representations are invertible residual networks (i-ResNets) and Neural ordinary differential equations (Neural ODEs). For these NNs, our set-boundary reachability method only needs to perform reachability analysis on the boundary of the input set. For NNs which do not feature this property with respect to the input set, we explore subsets of the input set for establishing the local homeomorphism property, and then abandon these subsets for reachability computations. Finally, some examples demonstrate the performance of the proposed method.