论文标题

通过反事实解释,在顺序数据中的细粒度异常检测

Fine-grained Anomaly Detection in Sequential Data via Counterfactual Explanations

论文作者

Cheng, He, Xu, Depeng, Yuan, Shuhan, Wu, Xintao

论文摘要

由于其在各种应用中的潜力,例如从日志数据中检测异常的系统行为,因此已经研究了顺序数据中的异常检测。尽管许多方法可以在异常序列检测上实现良好的性能,但是由于入门级缺乏信息,如何识别序列中的异常条目仍然具有挑战性。在这项工作中,我们提出了一个名为CFDET的新型框架,用于细粒度的异常检测。 CFDET利用可解释的机器学习的想法。给定一个被检测到异常的序列,我们可以将异常的入口检测视为可解释的机器学习任务,因为识别序列中的异常条目是为检测结果提供解释。我们利用深层支持矢量数据描述(深SVDD)方法来检测异常序列,并提出了一种基于反事实解释的新型方法,以识别序列中的异常条目。三个数据集的实验结果表明,CFDET可以正确检测异常条目。

Anomaly detection in sequential data has been studied for a long time because of its potential in various applications, such as detecting abnormal system behaviors from log data. Although many approaches can achieve good performance on anomalous sequence detection, how to identify the anomalous entries in sequences is still challenging due to a lack of information at the entry-level. In this work, we propose a novel framework called CFDet for fine-grained anomalous entry detection. CFDet leverages the idea of interpretable machine learning. Given a sequence that is detected as anomalous, we can consider anomalous entry detection as an interpretable machine learning task because identifying anomalous entries in the sequence is to provide an interpretation to the detection result. We make use of the deep support vector data description (Deep SVDD) approach to detect anomalous sequences and propose a novel counterfactual interpretation-based approach to identify anomalous entries in the sequences. Experimental results on three datasets show that CFDet can correctly detect anomalous entries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源