论文标题
部分可观测时空混沌系统的无模型预测
Fostering better coding practices for data scientists
论文作者
论文摘要
只要代码“有效”,许多数据科学专业的学生和从业人员就不会看到腾出时间学习和采用良好编码实践的价值。但是,代码标准是现代数据科学实践的重要组成部分,它们在数据敏锐度的发展中起着至关重要的作用。良好的编码实践会导致更可靠的代码,并节省比他们花费更多的时间,即使对于初学者来说,它们也很重要。我们认为,有原则的编码对于质量数据科学实践至关重要。为了有效地将这些实践灌输在学术课程中,讲师和计划需要早日开始建立这些实践,以经常加强它们,并在指导学生时保持更高的标准。我们描述了数据科学的良好编码实践的关键方面,并用R和Python中的示例说明了,尽管类似的标准适用于其他软件环境。实用的编码准则被组织成十大列表。
Many data science students and practitioners don't see the value in making time to learn and adopt good coding practices as long as the code "works". However, code standards are an important part of modern data science practice, and they play an essential role in the development of data acumen. Good coding practices lead to more reliable code and save more time than they cost, making them important even for beginners. We believe that principled coding is vital for quality data science practice. To effectively instill these practices within academic programs, instructors and programs need to begin establishing these practices early, to reinforce them often, and to hold themselves to a higher standard while guiding students. We describe key aspects of good coding practices for data science, illustrating with examples in R and in Python, though similar standards are applicable to other software environments. Practical coding guidelines are organized into a top ten list.