论文标题
通过沉浸冷却在超导电路中的量子浴抑制
Quantum bath suppression in a superconducting circuit by immersion cooling
论文作者
论文摘要
量子电路通过几个依赖温度的自由度与环境相互作用。然而,迄今为止的多个实验表明,超导设备的大多数特性似乎以$ t \ 50 $ MK的高度平稳 - 远高于冰箱碱温度。例如,这反映在量子位的热状态种群中,数量过多,表面旋转极化 - 导致相干性降低的因素。我们通过操作浸入液体$^3 $ HE的电路来演示如何消除这种热约束。这样可以有效冷却超导谐振器的破裂环境,并且我们看到测得的物理量持续变化为先前未探索的亚MK温度。 $^3 $他充当散热器,增加了量子浴的能量放松速率,连接到电路上千倍,但是被抑制的浴室不会引入其他电路损失或噪音。这种量子浴抑制可以降低量子电路中的变质,并为量子处理器中的热和相干管理打开途径。
Quantum circuits interact with the environment via several temperature-dependent degrees of freedom. Yet, multiple experiments to-date have shown that most properties of superconducting devices appear to plateau out at $T\approx 50$ mK -- far above the refrigerator base temperature. This is for example reflected in the thermal state population of qubits, in excess numbers of quasiparticles, and polarisation of surface spins -- factors contributing to reduced coherence. We demonstrate how to remove this thermal constraint by operating a circuit immersed in liquid $^3$He. This allows to efficiently cool the decohering environment of a superconducting resonator, and we see a continuous change in measured physical quantities down to previously unexplored sub-mK temperatures. The $^3$He acts as a heat sink which increases the energy relaxation rate of the quantum bath coupled to the circuit a thousand times, yet the suppressed bath does not introduce additional circuit losses or noise. Such quantum bath suppression can reduce decoherence in quantum circuits and opens a route for both thermal and coherence management in quantum processors.