论文标题

使用Lagrange乘数法的最佳步态家庭

Optimal Gait Families using Lagrange Multiplier Method

论文作者

Choi, Jinwoo, Bass, Capprin, Hatton, Ross L.

论文摘要

机器人运动社区对控制的最佳步态感兴趣。但是,基于优化标准,可能会有许多可能的最佳步态。例如,对于成本,最大化位移的最佳步态与最大位移最佳步态完全不同。除了这两个一般的最佳步态之外,我们认为最佳步态应处理各种运动计划的各种情况,例如,指导机器人或以“婴儿步骤”移动。随着步长或转向比的增加或减小,最佳步态将因几何关系而略有不同,它们将形成步态家族。在本文中,我们通过Lagrange乘法器方法探索了这些最佳步态中具有不同步骤大小不同的几何框架。基于结构,我们建议一个最佳基因座发生器,该发生器可以解决家庭中所有相关的最佳步态,而不是分别优化每个步态。通过将最佳基因座发生器应用于拖放主导的环境中的两个简化的游泳者,我们验证了最佳位置生成器的行为。

The robotic locomotion community is interested in optimal gaits for control. Based on the optimization criterion, however, there could be a number of possible optimal gaits. For example, the optimal gait for maximizing displacement with respect to cost is quite different from the maximum displacement optimal gait. Beyond these two general optimal gaits, we believe that the optimal gait should deal with various situations for high-resolution of motion planning, e.g., steering the robot or moving in "baby steps." As the step size or steering ratio increases or decreases, the optimal gaits will slightly vary by the geometric relationship and they will form the families of gaits. In this paper, we explored the geometrical framework across these optimal gaits having different step sizes in the family via the Lagrange multiplier method. Based on the structure, we suggest an optimal locus generator that solves all related optimal gaits in the family instead of optimizing each gait respectively. By applying the optimal locus generator to two simplified swimmers in drag-dominated environments, we verify the behavior of the optimal locus generator.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源