论文标题

部分可观测时空混沌系统的无模型预测

T2CI-GAN: Text to Compressed Image generation using Generative Adversarial Network

论文作者

Rajesh, Bulla, Dusa, Nandakishore, Javed, Mohammed, Dubey, Shiv Ram, Nagabhushan, P.

论文摘要

近年来,为视觉数据生成文本描述的问题引起了研究的关注。与此相反,从文本描述中生成视觉数据的问题仍然非常具有挑战性,因为它需要自然语言处理(NLP)和计算机视觉技术的组合。现有方法利用生成对抗网络(GAN)并从文本描述中生成未压缩的图像。但是,实际上,大多数视觉数据都是在压缩表示中处理和传输的。因此,拟议的工作试图使用深卷积gan(DCGAN)直接以压缩表示形式生成视觉数据,以实现存储和计算效率。我们建议从文本中生成压缩图像的GAN模型。第一个模型是通过JPEG压缩DCT图像(压缩域)直接训练的,以从文本描述中生成压缩图像。第二个模型是使用RGB图像(像素域)训练的,以从文本说明中生成JPEG压缩DCT表示。使用RGB和JPEG压缩版本在开源基准数据集牛津-102花图像上测试了所提出的模型,并在JPEG压缩域中完成了最先进的性能。该代码接受纸张后将在Github公开发布。

The problem of generating textual descriptions for the visual data has gained research attention in the recent years. In contrast to that the problem of generating visual data from textual descriptions is still very challenging, because it requires the combination of both Natural Language Processing (NLP) and Computer Vision techniques. The existing methods utilize the Generative Adversarial Networks (GANs) and generate the uncompressed images from textual description. However, in practice, most of the visual data are processed and transmitted in the compressed representation. Hence, the proposed work attempts to generate the visual data directly in the compressed representation form using Deep Convolutional GANs (DCGANs) to achieve the storage and computational efficiency. We propose GAN models for compressed image generation from text. The first model is directly trained with JPEG compressed DCT images (compressed domain) to generate the compressed images from text descriptions. The second model is trained with RGB images (pixel domain) to generate JPEG compressed DCT representation from text descriptions. The proposed models are tested on an open source benchmark dataset Oxford-102 Flower images using both RGB and JPEG compressed versions, and accomplished the state-of-the-art performance in the JPEG compressed domain. The code will be publicly released at GitHub after acceptance of paper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源