论文标题
部分可观测时空混沌系统的无模型预测
Two-photon emission in detuned resonance fluorescence
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We discuss two-photon correlations from the side peaks that are formed when a two-level system emitter is driven coherently, with a detuning between the driving source and the emitter (quasi-resonance fluorescence). We do so in the context of the theories of frequency-resolved photon correlations and homodyning, showing that their combination leads to a neat picture compatible with perturbative two-photon scattering that was popular in the early days of quantum electrodynamics. This should help to control, enhance and open new regimes of multiphoton emission. We also propose a way to evidence the quantum coherent nature of the process from photoluminescence only, through the observation of a collapse of the symmetry of the lineshape accompanied by a surge of its intensity of emission. We discuss several of our results in the light of recent experimental works.