论文标题
部分可观测时空混沌系统的无模型预测
Matrix tree theorem for the net Laplacian matrix of a signed graph
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
For a simple signed graph $G$ with the adjacency matrix $A$ and net degree matrix $D^{\pm}$, the net Laplacian matrix is $L^{\pm}=D^{\pm}-A$. We introduce a new oriented incidence matrix $N^{\pm}$ which can keep track of the sign as well as the orientation of each edge of $G$. Also $L^{\pm}=N^{\pm}(N^{\pm})^T$. Using this decomposition, we find the numbers of positive and negative spanning trees of $G$ in terms of the principal minors of $L^{\pm}$ generalizing Matrix Tree Theorem for an unsigned graph. We present similar results for the signless net Laplacian matrix $Q^{\pm}=D^{\pm}+A$ along with a combinatorial formula for its determinant.