论文标题

M理论的3D QFTS的对称TFTS

Symmetry TFTs for 3d QFTs from M-theory

论文作者

van Beest, Marieke, Gould, Dewi S. W., Schafer-Nameki, Sakura, Wang, Yi-Nan

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We derive the Symmetry Topological Field Theories (SymTFTs) for 3d supersymmetric quantum field theories (QFTs) constructed in M-theory either via geometric engineering or holography. These 4d SymTFTs encode the symmetry structures of the 3d QFTs, for instance the generalized global symmetries and their 't Hooft anomalies. Using differential cohomology, we derive the SymTFT by reducing M-theory on a 7-manifold $Y_7$, which either is the link of a conical Calabi-Yau four-fold or part of an $\text{AdS}_4\times Y_7$ holographic solution. In the holographic setting we first consider the 3d $\mathcal{N}=6$ ABJ(M) theories and derive the BF-couplings, which allow the identification of the global form of the gauge group, as well as 1-form symmetry anomalies. Secondly, we compute the SymTFT for 3d $\mathcal{N}=2$ quiver gauge theories whose holographic duals are based on Sasaki-Einstein 7-manifolds of type $Y_7 = Y^{p,k}(\mathbb{C}\mathbb{P}^2)$. The SymTFT encodes 0- and 1-form symmetries, as well as potential 't Hooft anomalies between these. Furthermore, by studying the gapped boundary conditions of the SymTFT we constrain the allowed choices for $U(1)$ Chern-Simons terms in the dual field theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源