论文标题

部分可观测时空混沌系统的无模型预测

PS-ARM: An End-to-End Attention-aware Relation Mixer Network for Person Search

论文作者

Fiaz, Mustansar, Cholakkal, Hisham, Narayan, Sanath, Anwer, Rao Muhammad, Khan, Fahad Shahbaz

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Person search is a challenging problem with various real-world applications, that aims at joint person detection and re-identification of a query person from uncropped gallery images. Although, the previous study focuses on rich feature information learning, it is still hard to retrieve the query person due to the occurrence of appearance deformations and background distractors. In this paper, we propose a novel attention-aware relation mixer (ARM) module for person search, which exploits the global relation between different local regions within RoI of a person and make it robust against various appearance deformations and occlusion. The proposed ARM is composed of a relation mixer block and a spatio-channel attention layer. The relation mixer block introduces a spatially attended spatial mixing and a channel-wise attended channel mixing for effectively capturing discriminative relation features within an RoI. These discriminative relation features are further enriched by introducing a spatio-channel attention where the foreground and background discriminability is empowered in a joint spatio-channel space. Our ARM module is generic and it does not rely on fine-grained supervision or topological assumptions, hence being easily integrated into any Faster R-CNN based person search methods. Comprehensive experiments are performed on two challenging benchmark datasets: CUHKSYSU and PRW. Our PS-ARM achieves state-of-the-art performance on both datasets. On the challenging PRW dataset, our PS-ARM achieves an absolute gain of 5 in the mAP score over SeqNet, while operating at a comparable speed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源