论文标题
通过CT投影的胸部X射线详细注释以进行报告理解
Detailed Annotations of Chest X-Rays via CT Projection for Report Understanding
论文作者
论文摘要
在临床放射学报告中,医生捕获了有关患者健康状况的重要信息。他们从有关患者内部结构的原始医学成像数据中传达了观察结果。因此,制定报告要求医学专家具有有关解剖区域的广泛知识,其正常,健康的外观以及识别异常的能力。在当前的医学图像处理系统中,由于注释特别难以收集,这种明确的掌握在患者的解剖结构和外观上都缺少。这使模型成为狭窄的专家,例如用于识别特定疾病。在这项工作中,我们通过将人体解剖结构添加到混合物中来恢复这种缺失的联系,并使医学报告中的内容之间的关系与它们在相关图像(医学短语接地)中的发生。为了利用这种情况下的解剖结构,我们提出了一条复杂的自动管道,以收集和整合计算机断层扫描数据集中的人体结构,我们将其纳入了PaxRay:一个投影数据集,用于分割X射线数据中的解剖结构。我们的评估表明,在视觉接地放射学家的发现中利用解剖学信息的方法很大程度上受益,因为与常用的区域建议相比,我们的解剖学分割允许在OpenI数据集中获得50%更好的接地结果。 Paxray数据集可从https://constantinseibold.github.io/paxray/获得。
In clinical radiology reports, doctors capture important information about the patient's health status. They convey their observations from raw medical imaging data about the inner structures of a patient. As such, formulating reports requires medical experts to possess wide-ranging knowledge about anatomical regions with their normal, healthy appearance as well as the ability to recognize abnormalities. This explicit grasp on both the patient's anatomy and their appearance is missing in current medical image-processing systems as annotations are especially difficult to gather. This renders the models to be narrow experts e.g. for identifying specific diseases. In this work, we recover this missing link by adding human anatomy into the mix and enable the association of content in medical reports to their occurrence in associated imagery (medical phrase grounding). To exploit anatomical structures in this scenario, we present a sophisticated automatic pipeline to gather and integrate human bodily structures from computed tomography datasets, which we incorporate in our PAXRay: A Projected dataset for the segmentation of Anatomical structures in X-Ray data. Our evaluation shows that methods that take advantage of anatomical information benefit heavily in visually grounding radiologists' findings, as our anatomical segmentations allow for up to absolute 50% better grounding results on the OpenI dataset as compared to commonly used region proposals. The PAXRay dataset is available at https://constantinseibold.github.io/paxray/.