论文标题
跨模式域的适应自由空间检测:一个简单而有效的基线
Cross-Modality Domain Adaptation for Freespace Detection: A Simple yet Effective Baseline
论文作者
论文摘要
作为自主驾驶系统的基本功能之一,FreeSpace检测旨在将相机捕获的图像的每个像素分类为可驱动或不可驱动的。当前的自由空间检测作品在很大程度上依赖大量标记的训练数据,以获得准确性和鲁棒性,这很耗时且辛苦地收集和注释。据我们所知,我们是第一项探索无监督的域适应性的工作,以减轻合成数据的数据限制问题。我们开发了一个跨模式域的适应框架,该框架利用了从深度图像产生的RGB图像和表面正常地图。提出了一个协作交叉指导(CCG)模块来利用一种模式的上下文信息以交叉方式指导另一种模式,从而实现了模式间内域的补充。为了更好地弥合源域(合成数据)和目标域(现实世界数据)之间的域间隙,我们还提出了一个选择性特征对齐(SFA)模块,该模块仅与两个域之间一致的前景区域的特征对齐,从而实现了域间内部模式的适应。通过将三个不同的合成数据集调整为一个现实世界数据集以进行自由空间检测来进行广泛的实验。我们的方法与完全监督的自由空间检测方法(93.08 V.S. 97.50 F1分数)紧密相关,并且优于其他无监督的域适应方法,用于具有较大边缘的语义分割,这表明了自由空间检测的域适应性潜力。
As one of the fundamental functions of autonomous driving system, freespace detection aims at classifying each pixel of the image captured by the camera as drivable or non-drivable. Current works of freespace detection heavily rely on large amount of densely labeled training data for accuracy and robustness, which is time-consuming and laborious to collect and annotate. To the best of our knowledge, we are the first work to explore unsupervised domain adaptation for freespace detection to alleviate the data limitation problem with synthetic data. We develop a cross-modality domain adaptation framework which exploits both RGB images and surface normal maps generated from depth images. A Collaborative Cross Guidance (CCG) module is proposed to leverage the context information of one modality to guide the other modality in a cross manner, thus realizing inter-modality intra-domain complement. To better bridge the domain gap between source domain (synthetic data) and target domain (real-world data), we also propose a Selective Feature Alignment (SFA) module which only aligns the features of consistent foreground area between the two domains, thus realizing inter-domain intra-modality adaptation. Extensive experiments are conducted by adapting three different synthetic datasets to one real-world dataset for freespace detection respectively. Our method performs closely to fully supervised freespace detection methods (93.08 v.s. 97.50 F1 score) and outperforms other general unsupervised domain adaptation methods for semantic segmentation with large margins, which shows the promising potential of domain adaptation for freespace detection.