论文标题
生物神经元充当储层计算中的概括过滤器
Biological neurons act as generalization filters in reservoir computing
论文作者
论文摘要
储层计算是一种机器学习范式,它可以改变用于处理时间序列数据的高维非线性系统的瞬态动力学。尽管最初提出了储层计算来对哺乳动物皮质中的信息处理进行建模,但尚不清楚皮质中的非随机网络结构(例如模块化结构)如何与活性神经元的生物物质集成以表征生物神经元网络(BNNS)的功能。在这里,我们使用光遗传学和荧光钙成像记录了培养的BNN的多细胞响应,并采用了储层计算框架来解码其计算能力。微图案底物用于将模块化结构嵌入BNN中。我们首先表明模块化BNN可用于将静态输入模式与线性解码器分类,并且BNN的模块化与分类精度正相关。然后,我们使用计时器任务来验证BNN具有〜1 s的短期内存,并最终表明可以利用此属性进行数字分类。有趣的是,基于BNN的水库允许转移学习,其中,在一个数据集中训练的网络可用于对同一类别的单独数据集进行分类。当线性解码器直接解码输入模式时,不可能进行这种分类,这表明BNN是改善储层计算性能的概括过滤器。我们的发现铺平了对BNN中信息处理的机械理解的道路,同时,将未来的期望建立在实现基于BNN的物理储层计算系统方面。
Reservoir computing is a machine learning paradigm that transforms the transient dynamics of high-dimensional nonlinear systems for processing time-series data. Although reservoir computing was initially proposed to model information processing in the mammalian cortex, it remains unclear how the non-random network architecture, such as the modular architecture, in the cortex integrates with the biophysics of living neurons to characterize the function of biological neuronal networks (BNNs). Here, we used optogenetics and fluorescent calcium imaging to record the multicellular responses of cultured BNNs and employed the reservoir computing framework to decode their computational capabilities. Micropatterned substrates were used to embed the modular architecture in the BNNs. We first show that modular BNNs can be used to classify static input patterns with a linear decoder and that the modularity of the BNNs positively correlates with the classification accuracy. We then used a timer task to verify that BNNs possess a short-term memory of ~1 s and finally show that this property can be exploited for spoken digit classification. Interestingly, BNN-based reservoirs allow transfer learning, wherein a network trained on one dataset can be used to classify separate datasets of the same category. Such classification was not possible when the input patterns were directly decoded by a linear decoder, suggesting that BNNs act as a generalization filter to improve reservoir computing performance. Our findings pave the way toward a mechanistic understanding of information processing within BNNs and, simultaneously, build future expectations toward the realization of physical reservoir computing systems based on BNNs.