论文标题

统一的稳定且不稳定的公式,用于具有完全非线性自由表面边界条件的流体动力势流仿真

A unified steady and unsteady formulation for hydrodynamic potential flow simulations with fully nonlinear free surface boundary conditions

论文作者

Mola, Andrea, Giuliani, Nicola, Crego, Óscar, Rozza, Gianluigi

论文摘要

这项工作讨论了基于潜在流程理论中的水波流量模拟中规定的完全非线性游离表面边界条件的正确建模。这样的讨论的主要目标是确定数学公式和数值处理,可用于进行瞬态模拟和计算稳定的解决方案 - 对于任何承认它们的流程。实际上,在有关数值牵引罐的文献中,稳定和不稳定的完全非线性电位流求解器的特征是不同的数学公式。讨论了运动学和动态的完全非线性的自由表面边界条件,尤其可以证明,可以操纵以半拉格朗日形式编写的运动学自由表面边界条件,以通过与在浮动物体或底层上使用的表面相同的方式来得出替代性的非穿透边界条件。通过边界元素方法(BEM)和隐式向后差公式(BDF)方案分别在空间和时间上离散了所获得的简化数学问题。结果证实,实施的求解器能够仅通过消除不稳定公式中的无时间衍生物来解决稳定的潜在流问题。获得的数值结果证实,实施的求解器能够准确地再现文献中可用的经典稳定流量求解器的结果。

This work discusses the correct modeling of the fully nonlinear free surface boundary conditions to be prescribed in water waves flow simulations based on potential flow theory. The main goal of such a discussion is that of identifying a mathematical formulation and a numerical treatment that can be used both to carry out transient simulations, and to compute steady solutions -- for any flow admitting them. In the literature on numerical towing tank in fact, steady and unsteady fully nonlinear potential flow solvers are characterized by different mathematical formulations. The kinematic and dynamic fully nonlinear free surface boundary conditions are discussed, and in particular it is proven that the kinematic free surface boundary condition, written in semi-Lagrangian form, can be manipulated to derive an alternative non penetration boundary condition by all means identical to the one used on the surface of floating bodies or on the basin bottom. The simplified mathematical problem obtained is discretized over space and time via Boundary Element Method (BEM) and Implicit Backward Difference Formula (BDF) scheme, respectively. The results confirm that the solver implemented is able to solve steady potential flow problems just by eliminating null time derivatives in the unsteady formulation. Numerical results obtained confirm that the solver implemented is able to accurately reproduce results of classical steady flow solvers available in the literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源