论文标题
从演示中学习自动驾驶安全性概念
Learning Autonomous Vehicle Safety Concepts from Demonstrations
论文作者
论文摘要
评估自动驾驶汽车(AV)的安全性取决于周围药物的行为,这些行为可能受到环境环境和非正式定义驾驶礼节等因素的严重影响。一个关键的挑战是确定对其他道路使用者的合理可预见行为的最低假设,以开发AV安全模型和技术。在本文中,我们提出了一种数据驱动的AV安全设计方法,该方法首先从数据中学习``合理''行为假设,然后使用这些学习的行为假设合成AV安全概念。我们从控制理论中借用技术,即高阶控制屏障功能和汉密尔顿 - 雅各比的可达性,以提供归纳偏见,以帮助我们方法的解释性,可验证性和障碍。在我们的实验中,我们使用从高速公路交通编织方案中收集的演示来学习一个AV安全概念,将我们学到的概念与现有基线进行比较,并展示其在评估现实世界驾驶日志方面的功效。
Evaluating the safety of an autonomous vehicle (AV) depends on the behavior of surrounding agents which can be heavily influenced by factors such as environmental context and informally-defined driving etiquette. A key challenge is in determining a minimum set of assumptions on what constitutes reasonable foreseeable behaviors of other road users for the development of AV safety models and techniques. In this paper, we propose a data-driven AV safety design methodology that first learns ``reasonable'' behavioral assumptions from data, and then synthesizes an AV safety concept using these learned behavioral assumptions. We borrow techniques from control theory, namely high order control barrier functions and Hamilton-Jacobi reachability, to provide inductive bias to aid interpretability, verifiability, and tractability of our approach. In our experiments, we learn an AV safety concept using demonstrations collected from a highway traffic-weaving scenario, compare our learned concept to existing baselines, and showcase its efficacy in evaluating real-world driving logs.