论文标题
相关的伪划分方法,用于双重棘手的问题
A correlated pseudo-marginal approach to doubly intractable problems
论文作者
论文摘要
在许多字段中遇到双重棘手的模型,例如社交网络,生态学和流行病学。此类模型的推断需要评估似然函数,其归一化因素取决于模型参数,并被认为在计算上是棘手的。后验分布的归一化常数和似然功能的附加归一化因子导致所谓的双重性后部,为此,很难直接使用马尔可夫链蒙特卡洛方法。我们提出了一种具有无偏的块状估计量的符号伪划分的大都市杂货算法,以从双棘手的模型的后验分布中采样。由于估计器可能为负,因此该算法靶向估计的后验的绝对值,并使用重要的采样估计器来确保对参数函数的后平均值仿真一致的估计值。当其分母接近零时,重要性采样估计器的性能较差。我们得出有限样本的浓度不平等,可确保这种病理案例不会发生。我们对双重棘手问题的估计量比现有估计器具有三个优点。首先,估计器非常适合有效的并行化和矢量化。其次,它的结构是相关的伪划分方法的理想选择,众所周知,这些方法大大提高了采样效率。第三,估算器可以在简化假设下调整其超参数的启发式指南。我们在标准基准示例中证明了我们方法的出色性能,即使用ISING模型以及球形数据的Kent分布模型相关联的空间数据。
Doubly intractable models are encountered in a number of fields, e.g. social networks, ecology and epidemiology. Inference for such models requires the evaluation of a likelihood function, whose normalising factor depends on the model parameters and is assumed to be computationally intractable. The normalising constant of the posterior distribution and the additional normalising factor of the likelihood function result in a so-called doubly intractable posterior, for which it is difficult to directly apply Markov chain Monte Carlo methods. We propose a signed pseudo-marginal Metropolis-Hastings algorithm with an unbiased block-Poisson estimator to sample from the posterior distribution of doubly intractable models. As the estimator can be negative, the algorithm targets the absolute value of the estimated posterior and uses an importance sampling estimator to ensure simulation-consistent estimates of the posterior mean of a function of the parameters. The importance sampling estimator can perform poorly when its denominator is close to zero. We derive a finite-sample concentration inequality that ensures, with high probability, that this pathological case does not occur. Our estimator for doubly intractable problems has three advantages over existing estimators. First, the estimator is well-suited for efficient parallelisation and vectorisation. Second, its structure is ideal for correlated pseudo-marginal methods, which are well known to dramatically increase sampling efficiency. Third, the estimator enables the derivation of heuristic guidelines for tuning its hyperparameters under simplifying assumptions. We demonstrate the superior performance of our method in the standard benchmark example that models correlated spatial data using the Ising model, as well as the Kent distribution model for spherical data.