论文标题
使用网格的近似值快速评估,用于重建紧凑型二进制源
Fast likelihood evaluation using meshfree approximations for reconstructing compact binary sources
论文作者
论文摘要
最近已经提出了几种快速参数估计方法,以应对在即将到来的重力波检测器陆地网络中检测到的紧凑型二进制源特性的贝叶斯推断问题的计算挑战。这些方法中的某些方法是精心设计的,以几乎实时地重建引力波信号,这是多通间族天文学所必需的。在这种情况下,这项工作提出了一种新的计算有效算法,用于使用数值线性代数和无网格插值方法的组合来快速评估似然函数。所提出的方法可以在样品空间的任何任意点上以微不足道的准确性丧失,是基于网格的参数估计方案的替代方案。我们通过将快速可能性评估方法与嵌套采样算法接口,从而获得了规范二进制中子星系的模型参数的后样品。从这些样品获得的边缘化后分布在统计学上与通过蛮力计算获得的后分布相同。我们发现,可以在检测到这种瞬态紧凑型二进制源的几分钟内确定这种贝叶斯后期,从而提高了它们在不同波长下使用望远镜进行迅速随访的机会。可以将本研究中提出的网格无网络技术的蓝图应用于其他领域的贝叶斯推理问题。
Several rapid parameter estimation methods have recently been advanced to deal with the computational challenges of the problem of Bayesian inference of the properties of compact binary sources detected in the upcoming science runs of the terrestrial network of gravitational wave detectors. Some of these methods are well-optimized to reconstruct gravitational wave signals in nearly real-time necessary for multi-messenger astronomy. In this context, this work presents a new, computationally efficient algorithm for fast evaluation of the likelihood function using a combination of numerical linear algebra and mesh-free interpolation methods. The proposed method can rapidly evaluate the likelihood function at any arbitrary point of the sample space at a negligible loss of accuracy and is an alternative to the grid-based parameter estimation schemes. We obtain posterior samples over model parameters for a canonical binary neutron star system by interfacing our fast likelihood evaluation method with the nested sampling algorithm. The marginalized posterior distributions obtained from these samples are statistically identical to those obtained by brute force calculations. We find that such Bayesian posteriors can be determined within a few minutes of detecting such transient compact binary sources, thereby improving the chances of their prompt follow-up observations with telescopes at different wavelengths. It may be possible to apply the blueprint of the meshfree technique presented in this study to Bayesian inference problems in other domains.