论文标题

基于骨架的动作识别的焦点和全球空间变压器

Focal and Global Spatial-Temporal Transformer for Skeleton-based Action Recognition

论文作者

Gao, Zhimin, Wang, Peitao, Lv, Pei, Jiang, Xiaoheng, Liu, Qidong, Wang, Pichao, Xu, Mingliang, Li, Wanqing

论文摘要

尽管Transformer在各种视觉任务中取得了巨大的进步,但仅通过几次尝试,基于骨架的动作识别仍未得到充满激发的进展。此外,这些方法在空间和时间尺寸的所有关节上都直接计算成对的全局自我注意力,从而低估了判别性局部关节和短期时间动力学的效果。在这项工作中,我们提出了一个新型的焦点和全局时空变压器网络(FG-STORMER),该变压器网络配备了两个关键组件:(1)FG-SFormer:焦点接头和全球零件耦合空间变压器。它迫使网络专注于分别为学习的判别空间关节和人体部位建模相关性。选择性焦点关节在积累相关性过程中消除了非信息性关节的负面影响。同时,将焦点关节和身体部位之间的相互作用纳入了通过相互交叉注意力来增强空间依赖性。 (2)FG-TFORMER:焦点和全局时间变压器。扩张的时间卷积被整合到全球自我发项机制中,以明确捕获关节或身体部位的局部时间运动模式,这对于使时间变压器起作用至关重要。在三个基准测试基准(即NTU-60,NTU-1220和NW-UCLA)上进行的广泛实验结果显示了我们的FG-stormer超过所有基于变压器的方法,并与基于GCN的最先进的方法进行了优惠。

Despite great progress achieved by transformer in various vision tasks, it is still underexplored for skeleton-based action recognition with only a few attempts. Besides, these methods directly calculate the pair-wise global self-attention equally for all the joints in both the spatial and temporal dimensions, undervaluing the effect of discriminative local joints and the short-range temporal dynamics. In this work, we propose a novel Focal and Global Spatial-Temporal Transformer network (FG-STFormer), that is equipped with two key components: (1) FG-SFormer: focal joints and global parts coupling spatial transformer. It forces the network to focus on modelling correlations for both the learned discriminative spatial joints and human body parts respectively. The selective focal joints eliminate the negative effect of non-informative ones during accumulating the correlations. Meanwhile, the interactions between the focal joints and body parts are incorporated to enhance the spatial dependencies via mutual cross-attention. (2) FG-TFormer: focal and global temporal transformer. Dilated temporal convolution is integrated into the global self-attention mechanism to explicitly capture the local temporal motion patterns of joints or body parts, which is found to be vital important to make temporal transformer work. Extensive experimental results on three benchmarks, namely NTU-60, NTU-120 and NW-UCLA, show our FG-STFormer surpasses all existing transformer-based methods, and compares favourably with state-of-the art GCN-based methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源