论文标题

Lungvit:纹理结合质量敏感的层次视觉变压器,用于跨卷胸部CT图像到图像翻译

LungViT: Ensembling Cascade of Texture Sensitive Hierarchical Vision Transformers for Cross-Volume Chest CT Image-to-Image Translation

论文作者

Chaudhary, Muhammad F. A., Gerard, Sarah E., Christensen, Gary E., Cooper, Christopher B., Schroeder, Joyce D., Hoffman, Eric A., Reinhardt, Joseph M.

论文摘要

胸部计算机断层扫描(CT)的灵感通常是通过呼气的CT来补充的,以鉴定外围气道疾病。另外,共同注册的灵感呼吸量可用于得出各种肺功能标记。但是,由于剂量或扫描时间考虑因素,可能不会获得呼气的CT扫描,也不会因运动或呼气不足而导致不足;导致错过评估潜在的小气道疾病的机会。在这里,我们提出了Lungvit-使用层次视觉变压器将灵感CT强度转化为相应的呼气CT强度的生成对抗学习方法。 Lungvit解决了传统生成模型的几个局限性,包括Slicewise不连续​​性,有限的生成量的数量以及它们无法在体积水平上建模纹理转移。我们提出了一个转移的窗口分层视觉变压器架构,并具有挤压和激发解码器块,用于在特征之间建模依赖性。我们还提出了一个多视纹理相似性距离度量,用于3D中的纹理和样式转移。为了将全球信息纳入培训过程并完善模型的输出,我们使用集合级联。 Lungvit能够生成320 x 320 x 320尺寸的大型3D体积。我们使用1500名受试者组成的有不同疾病严重程度的受试者进行训练和验证模型。为了评估超出开发集偏见以外的模型通用性,我们根据分布式外部验证集的200受试者评估模型。内部和外部测试集的临床验证表明,可以可靠地采用合成体积来得出慢性阻塞性肺部疾病的临床终点。

Chest computed tomography (CT) at inspiration is often complemented by an expiratory CT to identify peripheral airways disease. Additionally, co-registered inspiratory-expiratory volumes can be used to derive various markers of lung function. Expiratory CT scans, however, may not be acquired due to dose or scan time considerations or may be inadequate due to motion or insufficient exhale; leading to a missed opportunity to evaluate underlying small airways disease. Here, we propose LungViT - a generative adversarial learning approach using hierarchical vision transformers for translating inspiratory CT intensities to corresponding expiratory CT intensities. LungViT addresses several limitations of the traditional generative models including slicewise discontinuities, limited size of generated volumes, and their inability to model texture transfer at volumetric level. We propose a shifted-window hierarchical vision transformer architecture with squeeze-and-excitation decoder blocks for modeling dependencies between features. We also propose a multiview texture similarity distance metric for texture and style transfer in 3D. To incorporate global information into the training process and refine the output of our model, we use ensemble cascading. LungViT is able to generate large 3D volumes of size 320 x 320 x 320. We train and validate our model using a diverse cohort of 1500 subjects with varying disease severity. To assess model generalizability beyond the development set biases, we evaluate our model on an out-of-distribution external validation set of 200 subjects. Clinical validation on internal and external testing sets shows that synthetic volumes could be reliably adopted for deriving clinical endpoints of chronic obstructive pulmonary disease.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源