论文标题

$(2+1)$ - 尺寸对称性拓扑顺序的异常(3+1)$ - 维度拓扑量子场理论

Anomaly of $(2+1)$-Dimensional Symmetry-Enriched Topological Order from $(3+1)$-Dimensional Topological Quantum Field Theory

论文作者

Ye, Weicheng, Zou, Liujun

论文摘要

在(2+1)$ d $拓扑命令上作用的对称性可能是异常的,因为它们具有障碍物被纯粹是纯粹的(2+1)$ d $ d $现场对称性的障碍。在本文中,我们开发了一个(3+1)$ d $拓扑量子场理论,以计算A(2+1)$ d $拓扑订单的异常指标,其中具有一般对称性组$ G $,可能是离散的或连续的,Abelian或Abelian或非阿伯利亚人,包含反独立的元素,并且不包括任何人,并且不包括任何人。这些异常指标是(3+1)$ d $拓扑量子场理论的分区函数,配备了一些$ G $ - 捆绑器,并且使用表征拓扑顺序和对称性动作的数据表示它们。我们的框架适用于各种对称组的异常指标,包括$ \ MATHBB {Z} _2 \ times \ times \ Mathbb {z} _2 $,$ \ Mathbb {z} _2^t \ times \ times \ times \ times \ mathbb {z}} \ Mathbb {z} _2^t $等,其中$ \ Mathbb {z} _2 $和$ \ Mathbb {z} _2^t $分别表示单独和反式订单2组,以及$ o(n)^t $表示对称群体$ o(n)$ o(n)$ o(n)$ o(n)$ o(n)$ o(n)$ o o(n)$ o(n)$ o(n)$ o(n)。特别是,我们证明了$ O(n)^t $和$ SO(N)\ Times \ Mathbb {Z} _2^t $的某些异常,表现出对称性 - 强制性的无间隙,即,任何对称性的Enrriched-Enriched topological Order无法实现它们。作为副产品,对于$ SO(N)$对称拓扑订单,我们得出了其$ SO(N)$ HALL电导。

Symmetry acting on a (2+1)$D$ topological order can be anomalous in the sense that they possess an obstruction to being realized as a purely (2+1)$D$ on-site symmetry. In this paper, we develop a (3+1)$D$ topological quantum field theory to calculate the anomaly indicators of a (2+1)$D$ topological order with a general symmetry group $G$, which may be discrete or continuous, Abelian or non-Abelian, contain anti-unitary elements or not, and permute anyons or not. These anomaly indicators are partition functions of the (3+1)$D$ topological quantum field theory on a specific manifold equipped with some $G$-bundle, and they are expressed using the data characterizing the topological order and the symmetry actions. Our framework is applied to derive the anomaly indicators for various symmetry groups, including $\mathbb{Z}_2\times\mathbb{Z}_2$, $\mathbb{Z}_2^T\times\mathbb{Z}_2^T$, $SO(N)$, $O(N)^T$, $SO(N)\times \mathbb{Z}_2^T$, etc, where $\mathbb{Z}_2$ and $\mathbb{Z}_2^T$ denote a unitary and anti-unitary order-2 group, respectively, and $O(N)^T$ denotes a symmetry group $O(N)$ such that elements in $O(N)$ with determinant $-1$ are anti-unitary. In particular, we demonstrate that some anomaly of $O(N)^T$ and $SO(N)\times \mathbb{Z}_2^T$ exhibit symmetry-enforced gaplessness, i.e., they cannot be realized by any symmetry-enriched topological order. As a byproduct, for $SO(N)$ symmetric topological orders, we derive their $SO(N)$ Hall conductance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源