论文标题

贝叶斯统计方法的孔径成像数据:解决方案符合Alma

Bayesian statistics approach to imaging of aperture synthesis data: RESOLVE meets ALMA

论文作者

Tychoniec, Łukasz, Guglielmetti, Fabrizia, Arras, Philipp, Enßlin, Torsten, Villard, Eric

论文摘要

Atacama大毫米/亚毫米阵列(ALMA)目前正在彻底改变观察天体物理学。光圈合成技术提供了角度分辨率,否则传统的单次望远镜也无法实现。但是,从本质上采样的数据中恢复图像是一项艰巨的任务。清洁算法已被证明是成功和可靠的,并且通常用于成像干涉测量值。但是,这不是没有限制的。点源假设,清洁的核心对于阿尔玛回收的分子气体的扩展结构并不是最佳的。另外,用清洁恢复的负通量不是物理的。这旨在寻找更适合特定科学案例的替代方案。我们使用贝叶斯推理技术介绍了成像ALMA数据的最新发展,即基于信息字段理论\ cite \ cite {ensslin2013}的解析算法,已经成功地应用于图像非常大的数组数据。我们比较了清洁和决心恢复已知的天空信号的能力,并用Alma观察数据的模拟器进行了卷曲,我们通过一组实际的ALMA观察研究了问题。

The Atacama Large Millimeter/submillimeter Array (ALMA) is currently revolutionizing observational astrophysics. The aperture synthesis technique provides angular resolution otherwise unachievable with the conventional single-aperture telescope. However, recovering the image from the inherently undersampled data is a challenging task. The CLEAN algorithm has proven successful and reliable and is commonly used in imaging the interferometric observations. It is not, however, free of limitations. Point-source assumption, central to the CLEAN is not optimal for the extended structures of molecular gas recovered by ALMA. Additionally, negative fluxes recovered with CLEAN are not physical. This begs to search for alternatives that would be better suited for specific science cases. We present the recent developments in imaging ALMA data using Bayesian inference techniques, namely the RESOLVE algorithm This algorithm, based on information field theory \cite{Ensslin2013}, has been already successfully applied to image the Very Large Array data. We compare the capability of both CLEAN and RESOLVE to recover known sky signal, convoluted with the simulator of ALMA observation data and we investigate the problem with a set of actual ALMA observations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源