论文标题

化学扩散主方程:反应的配方 - 分子水平上的扩散过程

Chemical diffusion master equation: formulations of reaction--diffusion processes on the molecular level

论文作者

del Razo, Mauricio J., Winkelmann, Stefanie, Klein, Rupert, Höfling, Felix

论文摘要

化学扩散主方程(CDME)描述了分子水平上反应系统的概率动力学[Del Razo等,Lett。数学。物理。 112:49,2022];可以将其视为反应 - 扩散过程的主方程。 CDME由fokker-Planck方程的无限有序家族组成,其中有序家族的每个级别都对应于一定数量的粒子,每个粒子代表一个分子。每个级别的方程描述了相应的颗粒集的空间扩散,它们通过反应算子彼此耦合 - 代表化学反应的线性算子。这些操作员会更改系统中的粒子数量,从而改变家族不同水平之间的概率。在这项工作中,我们提出了三种制定CDME并显示它们之间关系的方法。我们进一步推断出反应算子中包含的非平凡组合因子,并阐明了与CDME的原始配方的关系,CDME的关系基于作用和an灭算子,作用于许多粒子概率密度函数。最后,我们讨论了对生化系统多尺度模拟以及其他未来前景的应用。

The chemical diffusion master equation (CDME) describes the probabilistic dynamics of reaction--diffusion systems at the molecular level [del Razo et al., Lett. Math. Phys. 112:49, 2022]; it can be considered the master equation for reaction--diffusion processes. The CDME consists of an infinite ordered family of Fokker--Planck equations, where each level of the ordered family corresponds to a certain number of particles and each particle represents a molecule. The equations at each level describe the spatial diffusion of the corresponding set of particles, and they are coupled to each other via reaction operators --linear operators representing chemical reactions. These operators change the number of particles in the system, and thus transport probability between different levels in the family. In this work, we present three approaches to formulate the CDME and show the relations between them. We further deduce the non-trivial combinatorial factors contained in the reaction operators, and we elucidate the relation to the original formulation of the CDME, which is based on creation and annihilation operators acting on many-particle probability density functions. Finally we discuss applications to multiscale simulations of biochemical systems among other future prospects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源