论文标题

粒度感知的适应图像检索多个任务

Granularity-aware Adaptation for Image Retrieval over Multiple Tasks

论文作者

Almazán, Jon, Ko, Byungsoo, Gu, Geonmo, Larlus, Diane, Kalantidis, Yannis

论文摘要

可以为特定领域学习强大的图像搜索模型,即。一组标签,只要有一些标记的该域的标记图像。但是,实用的视觉搜索模型应该足够多功能,即使这些域涵盖了非常不同的专用域,也应同时解决多个检索任务。此外,它应该能够从这些检索任务中的未标记图像中受益。这是我们在本文中考虑的更实用的情况。我们使用拟议的Grappa解决它,该方法从强大的预预读模型开始,并将其调整以同时处理多个检索任务,仅使用来自不同任务域中的未标记图像。我们使用多个独立训练的适配器组扩展了预处理的模型,这些适配器使用了不同尺寸的伪标签集,有效地模仿了不同的伪粒性。我们通过学习融合层来调和适合所有检索任务的单个统一模型,通过学习融合层,我们通过在特征空间中跨越邻居传播伪粒性。由六个异质检索任务组成的基准测试的结果表明,无监督的Grappa模型改善了最先进的自我监督学习模型的零拍摄性能,并且在某些地方,在某些地方可以选择或改进任务标签的甲骨文,从而选择了最合适的pseudo granullanity granularity per tass。

Strong image search models can be learned for a specific domain, ie. set of labels, provided that some labeled images of that domain are available. A practical visual search model, however, should be versatile enough to solve multiple retrieval tasks simultaneously, even if those cover very different specialized domains. Additionally, it should be able to benefit from even unlabeled images from these various retrieval tasks. This is the more practical scenario that we consider in this paper. We address it with the proposed Grappa, an approach that starts from a strong pretrained model, and adapts it to tackle multiple retrieval tasks concurrently, using only unlabeled images from the different task domains. We extend the pretrained model with multiple independently trained sets of adaptors that use pseudo-label sets of different sizes, effectively mimicking different pseudo-granularities. We reconcile all adaptor sets into a single unified model suited for all retrieval tasks by learning fusion layers that we guide by propagating pseudo-granularity attentions across neighbors in the feature space. Results on a benchmark composed of six heterogeneous retrieval tasks show that the unsupervised Grappa model improves the zero-shot performance of a state-of-the-art self-supervised learning model, and in some places reaches or improves over a task label-aware oracle that selects the most fitting pseudo-granularity per task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源