论文标题

对冠状回路的磁重新连接范例的判断

Judgment of paradigms for magnetic reconnection in coronal loops

论文作者

Boozer, Allen H

论文摘要

用于磁场线路连接的传统范式忽略了磁场线的混乱,需要极大的电流密度,$ j_ {max} \ propto r_m $,以厚度$ 1/r_m $的薄纸流动,其中$ r_m $ $ r_m $是磁性reynolds编号。很少考虑将一般自然进化带入这种状态的一般自然进化所需的时间。自然发展通常会导致磁场线变得混乱。然后,在通过演化乘以$ \ ln(r_m)$ factor的演化定义的时间尺度上出现了快速变化,而所需的最大电流密度尺度为$ \ ln(r_m)$。即使模拟支持基于混乱的新范式,它们也被解释为支持旧的范式。这可能发生的是库恩关于接受范式变化的陈述以及波普尔对科学中真理判断的观点的陈述的重要例子。

The traditional paradigm for magnetic field lines changing connections ignores magnetic field line chaos and requires an extremely large current density, $j_{max}\propto R_m$, flowing in thin sheets of thickness $1/R_m$, where $R_m$ is the magnetic Reynolds number. The time required for a general natural evolution to take a smooth magnetic field into such a state is rarely considered. Natural evolutions generally cause magnetic field lines to become chaotic. A fast change in field line connections then arises on the timescale defined by the evolution multiplied by a $\ln(R_m)$ factor, and the required maximum current density scales as $\ln(R_m)$. Even when simulations support the new paradigm based on chaos, they have been interpreted as supporting the old. How this could happen is an important example for plasma physics of Kuhn's statements about the acceptance of paradigm change and on Popper's views on the judgment of truth in science.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源