论文标题
关于高维的可整合系统:一个新的古典和量子哈密顿模型家族
On higher-dimensional superintegrable systems: A new family of classical and quantum Hamiltonian models
论文作者
论文摘要
我们介绍了一个由$ n $维的汉密尔顿系统组成的家族,该系统包含特殊降低的几个可整合系统,例如Tremblay-Turbiner-Winternitz System,一种广义的开花器潜力和带有Rosochatius项的各向异性和谐振荡器。我们猜想,除了导致已知案例的参数空间中存在特殊值,而这个新的汉密尔顿家族是可以整合的。
We introduce a family of $n$-dimensional Hamiltonian systems which, contain, as special reductions, several superintegrable systems as the Tremblay-Turbiner-Winternitz system, a generalized Kepler potential and the anisotropic harmonic oscillator with Rosochatius terms. We conjecture that there exist special values in the space of parameters, apart from those leading to known cases, for which this new Hamiltonian family is superintegrable.