论文标题
圆柱体的对数Minkowski不平等
The logarithmic Minkowski inequality for cylinders
论文作者
论文摘要
在本文中,我们证明,如果$ k $是$ o $ $ -SMEMEMEMEMETRIC圆柱体,而$ l $是$ o $ -smmetric convex the $ \ mathbb r^3 $,则是对数Minkowski不平等\ [\ frac {\ frac {1} {v(k){v(k){v(k){v(k) s^{2}} \ log \ frac {h_l} {h_k} \,dv_k \ geq \ geq \ frac {1} {3} {3} \ log \ frac {v(l)} {v(l)} {v(v(k)} \]的持有,仅在$ k $和$ k $ l $ cylind时,
In this paper, we prove that if $K$ is an $o$-symmetric cylinder and $L$ is an $o$-symmetric convex body in $\mathbb R^3$, then the logarithmic Minkowski inequality \[\frac{1}{V(K)}\int_{\mathbb S^{2}}\log\frac{h_L}{h_K}\,dV_K\geq\frac{1}{3}\log\frac{V(L)}{V(K)}\] holds, with equality if and only if $K$ and $L$ are relative cylinders.