论文标题
部分可观测时空混沌系统的无模型预测
Robust self-healing prediction model for high dimensional data
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Owing to the advantages of increased accuracy and the potential to detect unseen patterns, provided by data mining techniques they have been widely incorporated for standard classification problems. They have often been used for high precision disease prediction in the medical field, and several hybrid prediction models capable of achieving high accuracies have been proposed. Though this stands true most of the previous models fail to efficiently address the recurring issue of bad data quality which plagues most high dimensional data, and especially proves troublesome in the highly sensitive medical data. This work proposes a robust self healing (RSH) hybrid prediction model which functions by using the data in its entirety by removing errors and inconsistencies from it rather than discarding any data. Initial processing involves data preparation followed by cleansing or scrubbing through context-dependent attribute correction, which ensures that there is no significant loss of relevant information before the feature selection and prediction phases. An ensemble of heterogeneous classifiers, subjected to local boosting, is utilized to build the prediction model and genetic algorithm based wrapper feature selection technique wrapped on the respective classifiers is employed to select the corresponding optimal set of features, which warrant higher accuracy. The proposed method is compared with some of the existing high performing models and the results are analyzed.