论文标题
来自多个射击事件的神经元种群的监督参数估计
Supervised Parameter Estimation of Neuron Populations from Multiple Firing Events
论文作者
论文摘要
数学模型中生物神经元的发射动力学通常取决于模型的参数,代表神经元的潜在特性。参数估计问题旨在从对外部刺激的反应和他们之间的相互作用中恢复单个神经元或神经元种群的那些参数。在文献中解决此问题的最常见方法与基于仿真或基于解决方案的优化方案结合使用了一些机械模型。在本文中,我们研究了一种从训练组中学习神经元种群参数的自动方法,该训练集由尖峰系列和参数标签组成,并通过监督学习。与以前的工作不同,这种自动学习在推理时间不需要其他模拟,也不需要在得出分析解决方案或构建某些近似模型时的专家知识。我们使用随机神经元模型模拟许多具有不同参数设置的神经元群体。使用这些数据,我们培训各种监督的机器学习模型,包括卷积和深神经网络,随机森林和支持向量回归。然后,我们将它们的性能与经典方法进行比较,包括遗传搜索,贝叶斯顺序估计和随机步行近似模型。监督模型几乎总是优于参数估计和尖峰重建错误以及计算费用中的经典方法。尤其是卷积神经网络是所有指标中所有模型中最好的。监督模型还可以在一定程度上推广到分布数据。
The firing dynamics of biological neurons in mathematical models is often determined by the model's parameters, representing the neurons' underlying properties. The parameter estimation problem seeks to recover those parameters of a single neuron or a neuron population from their responses to external stimuli and interactions between themselves. Most common methods for tackling this problem in the literature use some mechanistic models in conjunction with either a simulation-based or solution-based optimization scheme. In this paper, we study an automatic approach of learning the parameters of neuron populations from a training set consisting of pairs of spiking series and parameter labels via supervised learning. Unlike previous work, this automatic learning does not require additional simulations at inference time nor expert knowledge in deriving an analytical solution or in constructing some approximate models. We simulate many neuronal populations with different parameter settings using a stochastic neuron model. Using that data, we train a variety of supervised machine learning models, including convolutional and deep neural networks, random forest, and support vector regression. We then compare their performance against classical approaches including a genetic search, Bayesian sequential estimation, and a random walk approximate model. The supervised models almost always outperform the classical methods in parameter estimation and spike reconstruction errors, and computation expense. Convolutional neural network, in particular, is the best among all models across all metrics. The supervised models can also generalize to out-of-distribution data to a certain extent.