论文标题

使用深度学习检测资产价格气泡

Detecting asset price bubbles using deep learning

论文作者

Biagini, Francesca, Gonon, Lukas, Mazzon, Andrea, Meyer-Brandis, Thilo

论文摘要

在本文中,我们采用深度学习技术来通过使用观察到的呼叫选项价格来检测金融资产气泡。所提出的算法广泛适用且独立于模型。我们在广泛模型的数值实验中测试了方法的准确性,并将其应用于技术股票的市场数据,以评估资产价格是否存在。在具有资产价格气泡下的呼叫期权定价的给定条件下,我们能够为我们的积极和连续的随机资产价格流程提供理论基础。当不满足这种情况时,我们将重点放在局部波动率模型上。为此,我们提供了一个新的必要条件,以使其与时间相关的本地波动率功能成为严格的本地赛车。

In this paper we employ deep learning techniques to detect financial asset bubbles by using observed call option prices. The proposed algorithm is widely applicable and model-independent. We test the accuracy of our methodology in numerical experiments within a wide range of models and apply it to market data of tech stocks in order to assess if asset price bubbles are present. Under a given condition on the pricing of call options under asset price bubbles, we are able to provide a theoretical foundation of our approach for positive and continuous stochastic asset price processes. When such a condition is not satisfied, we focus on local volatility models. To this purpose, we give a new necessary and sufficient condition for a process with time-dependent local volatility function to be a strict local martingale.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源