论文标题

张量还原原子密度表示

Tensor-reduced atomic density representations

论文作者

Darby, James P., Kovács, Dávid P., Batatia, Ilyes, Caro, Miguel A., Hart, Gus L. W., Ortner, Christoph, Csányi, Gábor

论文摘要

在欧几里得对称性下不变的原子环境的密度表示已成为原子质潜力的机器学习中广泛使用的工具,更广泛的数据驱动的原子建模以及材料数据集的可视化和分析。用于在每种元素和形成元素产品之间创建的化学元素的标准机制,用于创建分离的化学元素信息。随着元素数量的增加,这会导致表示形式的陡峭缩放。不明确使用密度表示的图形神经网络,通过以可学习的方式将化学元素信息映射到固定的维空间中来避免这种缩放。我们通过利用基于标准邻居密度的描述符的张量结构来将这种方法作为张量分解。在此过程中,我们形成了紧凑的张量减少表示的表示,其大小不取决于化学元素的数量,但仍可以系统地收敛,因此适用于广泛的数据分析和回归任务。

Density based representations of atomic environments that are invariant under Euclidean symmetries have become a widely used tool in the machine learning of interatomic potentials, broader data-driven atomistic modelling and the visualisation and analysis of materials datasets.The standard mechanism used to incorporate chemical element information is to create separate densities for each element and form tensor products between them. This leads to a steep scaling in the size of the representation as the number of elements increases. Graph neural networks, which do not explicitly use density representations, escape this scaling by mapping the chemical element information into a fixed dimensional space in a learnable way. We recast this approach as tensor factorisation by exploiting the tensor structure of standard neighbour density based descriptors. In doing so, we form compact tensor-reduced representations whose size does not depend on the number of chemical elements, but remain systematically convergeable and are therefore applicable to a wide range of data analysis and regression tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源