论文标题

手量:通过正常流量量化双手重建中的依赖视图的3D歧义

HandFlow: Quantifying View-Dependent 3D Ambiguity in Two-Hand Reconstruction with Normalizing Flow

论文作者

Wang, Jiayi, Luvizon, Diogo, Mueller, Franziska, Bernard, Florian, Kortylewski, Adam, Casas, Dan, Theobalt, Christian

论文摘要

从单个图像中重建两手相互作用是一个充满挑战的问题,这是由于投影性的几何形状和沉重的遮挡所造成的。尽管存在其他有效的重建,但现有方法旨在仅估计一个姿势,尽管存在其他有效的重建,这些重建符合图像证据同样符合图像证据。在本文中,我们建议通过在有条件地归一化流框架中明确建模合理重建的分布来解决此问题。这使我们能够通过新颖的决定性幅度正规化直接监督后验分布,这是多种多样的3D手姿势样品的关键,这些样品可以很好地投射到输入图像中。我们还证明,通常用于评估重建质量的指标不足以评估如此严重的歧义下的姿势预测。为了解决这个问题,我们发布了第一个数据集,每个图像称为多手。附加注释使我们能够使用最大平均差异度量评估估计分布。通过此,我们证明了概率重建的质量,并表明明确的歧义建模非常适合这个具有挑战性的问题。

Reconstructing two-hand interactions from a single image is a challenging problem due to ambiguities that stem from projective geometry and heavy occlusions. Existing methods are designed to estimate only a single pose, despite the fact that there exist other valid reconstructions that fit the image evidence equally well. In this paper we propose to address this issue by explicitly modeling the distribution of plausible reconstructions in a conditional normalizing flow framework. This allows us to directly supervise the posterior distribution through a novel determinant magnitude regularization, which is key to varied 3D hand pose samples that project well into the input image. We also demonstrate that metrics commonly used to assess reconstruction quality are insufficient to evaluate pose predictions under such severe ambiguity. To address this, we release the first dataset with multiple plausible annotations per image called MultiHands. The additional annotations enable us to evaluate the estimated distribution using the maximum mean discrepancy metric. Through this, we demonstrate the quality of our probabilistic reconstruction and show that explicit ambiguity modeling is better-suited for this challenging problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源