论文标题

智能建筑中多个时间范围的位置感知的绿色能源可用性预测:爱沙尼亚的情况

Location-aware green energy availability forecasting for multiple time frames in smart buildings: The case of Estonia

论文作者

Hatamian, Mehdi, Panigrahi, Bivas, Dehury, Chinmaya Kumar

论文摘要

近年来,可再生能源(RE)已获得更干净和可持续的能源以来引起了人们的关注。联合国(UN)设定的主要可持续发展目标之一(SDG-7)是为每个人实现负担得起的清洁能源。在世界上所有可再生能源的资源中,太阳能被认为是最丰富的资源,当然可以实现可持续发展目标的目标。太阳能通过没有温室气体排放的光伏(PV)面板转化为电能。但是,PV面板产生的功率高度取决于在给定时间段内在特定位置接收的太阳辐射。因此,预测PV输出功率的量是一项挑战。预测PV系统的输出功率至关重要,因为几个公共或私人机构会产生这种绿色能源,并且需要保持需求和供应之间的平衡。该研究旨在根据天气和使用不同的机器学习模型的衍生功能来预测PV系统输出功率。目的是获得最合适的模型,以通过检查数据来精确预测输出功率。此外,使用不同的性能指标来比较和评估不同机器学习模型(如随机森林,Xgboost,KNN等)的准确性。

Renewable Energies (RE) have gained more attention in recent years since they offer clean and sustainable energy. One of the major sustainable development goals (SDG-7) set by the United Nations (UN) is to achieve affordable and clean energy for everyone. Among the world's all renewable resources, solar energy is considered as the most abundant and can certainly fulfill the target of SDGs. Solar energy is converted into electrical energy through Photovoltaic (PV) panels with no greenhouse gas emissions. However, power generated by PV panels is highly dependent on solar radiation received at a particular location over a given time period. Therefore, it is challenging to forecast the amount of PV output power. Predicting the output power of PV systems is essential since several public or private institutes generate such green energy, and need to maintain the balance between demand and supply. This research aims to forecast PV system output power based on weather and derived features using different machine learning models. The objective is to obtain the best-fitting model to precisely predict output power by inspecting the data. Moreover, different performance metrics are used to compare and evaluate the accuracy under different machine learning models such as random forest, XGBoost, KNN, etc.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源