论文标题
计划:通过正交平面的自我监督深度估算
PlaneDepth: Self-supervised Depth Estimation via Orthogonal Planes
论文作者
论文摘要
基于多个基于额叶平行平面的深度表示,在自我监督的单眼深度估计(MDE)中表现出令人印象深刻的结果。而这样的表示形式将导致地面的不连续性,因为它垂直于正面平行的平面,这对自主驾驶中可驱动的空间的识别有害。在本文中,我们提出了策划编辑,这是一种基于正交平面的新型呈现,包括垂直平面和地面。策划开发使用基于输入图像的正交平面的Laplacian混合模型估算深度分布。这些平面用于合成一个参考视图以提供自我实施信号。此外,我们发现广泛使用的调整大小和裁剪数据扩大破坏了正交性假设,从而导致平面预测。我们通过明确构建调整裁剪大小的转换来解决这个问题,以纠正预定义的平面和预测的相机姿势。此外,我们提出了用双侧遮挡面膜监督的增强自我依次损失,以提高正交平面代表的稳健性以闭塞。多亏了我们的正交平面代表,我们可以以无监督的方式提取地面平面,这对于自动驾驶非常重要。 Kitti数据集的广泛实验证明了我们方法的有效性和效率。该代码可从https://github.com/svip-lab/planedepth获得。
Multiple near frontal-parallel planes based depth representation demonstrated impressive results in self-supervised monocular depth estimation (MDE). Whereas, such a representation would cause the discontinuity of the ground as it is perpendicular to the frontal-parallel planes, which is detrimental to the identification of drivable space in autonomous driving. In this paper, we propose the PlaneDepth, a novel orthogonal planes based presentation, including vertical planes and ground planes. PlaneDepth estimates the depth distribution using a Laplacian Mixture Model based on orthogonal planes for an input image. These planes are used to synthesize a reference view to provide the self-supervision signal. Further, we find that the widely used resizing and cropping data augmentation breaks the orthogonality assumptions, leading to inferior plane predictions. We address this problem by explicitly constructing the resizing cropping transformation to rectify the predefined planes and predicted camera pose. Moreover, we propose an augmented self-distillation loss supervised with a bilateral occlusion mask to boost the robustness of orthogonal planes representation for occlusions. Thanks to our orthogonal planes representation, we can extract the ground plane in an unsupervised manner, which is important for autonomous driving. Extensive experiments on the KITTI dataset demonstrate the effectiveness and efficiency of our method. The code is available at https://github.com/svip-lab/PlaneDepth.