论文标题
一个生成形状的成分框架,以综合虚拟嵌合体的种群
A Generative Shape Compositional Framework to Synthesise Populations of Virtual Chimaeras
论文作者
论文摘要
生成捕获足够可变性同时捕获合理性的虚拟群体对于进行医疗设备的核内试验至关重要。但是,并非所有感兴趣的解剖形状始终可用于人群中的每个人。因此,通常在人群中的个体中都可以找到缺失/部分重叠的解剖信息。我们为复杂的解剖结构引入了生成形状模型,可从未配对数据集的数据集中学习。所提出的生成模型可以合成完整的整个复杂形状组件,与自然的人嵌合体相反。我们应用了此框架来从全心脏组件的数据库中构建虚拟嵌合体,每个框架都为心脏子结构提供了样本。具体而言,我们提出了一个生成形状组成框架,该框架包括两个组成部分 - 一种部分感知的生成形状模型,可捕获训练人群中感兴趣的每个结构的形状变化;和一个空间组成网络组成/组成前者合成的结构中的多部分形状组件(即虚拟嵌合体)。我们还提出了一种新型的自我监督学习计划,该计划使空间组成网络可以通过部分重叠的数据和弱标签进行训练。我们使用来自英国生物库中的心脏磁共振图像的心脏结构的形状训练和验证了我们的方法。我们的方法在普遍性和特异性方面大大优于基于PCA的形状模型(经过完整数据训练)。这证明了所提出的方法的优势,因为合成的心脏虚拟群体比基于PCA基于PCA的形状模型产生的心脏虚拟群体更合理,并捕获形状的变化程度更高。
Generating virtual populations of anatomy that capture sufficient variability while remaining plausible is essential for conducting in-silico trials of medical devices. However, not all anatomical shapes of interest are always available for each individual in a population. Hence, missing/partially-overlapping anatomical information is often available across individuals in a population. We introduce a generative shape model for complex anatomical structures, learnable from datasets of unpaired datasets. The proposed generative model can synthesise complete whole complex shape assemblies coined virtual chimaeras, as opposed to natural human chimaeras. We applied this framework to build virtual chimaeras from databases of whole-heart shape assemblies that each contribute samples for heart substructures. Specifically, we propose a generative shape compositional framework which comprises two components - a part-aware generative shape model which captures the variability in shape observed for each structure of interest in the training population; and a spatial composition network which assembles/composes the structures synthesised by the former into multi-part shape assemblies (viz. virtual chimaeras). We also propose a novel self supervised learning scheme that enables the spatial composition network to be trained with partially overlapping data and weak labels. We trained and validated our approach using shapes of cardiac structures derived from cardiac magnetic resonance images available in the UK Biobank. Our approach significantly outperforms a PCA-based shape model (trained with complete data) in terms of generalisability and specificity. This demonstrates the superiority of the proposed approach as the synthesised cardiac virtual populations are more plausible and capture a greater degree of variability in shape than those generated by the PCA-based shape model.