论文标题
在辫子上,并链接到链接 - 动物
On braids and links up to link-homotopy
论文作者
论文摘要
本文从Habiro的Clasper Colculus的角度研究了链接和编织链接。更确切地说,我们在两个主要方向上使用clasper同型演算。首先,我们通过使用扣子作为几何换向器来定义和计算同型辫子组的忠实线性表示。其次,我们给出了Levine对链接 - 动作范围之前的4组件链接的分类的几何证明,并在代数分开的情况下进一步进行5组分链接的分类。
This paper deals with links and braids up to link-homotopy, studied from the viewpoint of Habiro's clasper calculus. More precisely, we use clasper homotopy calculus in two main directions. First, we define and compute a faithful linear representation of the homotopy braid group, by using claspers as geometric commutators. Second, we give a geometric proof of Levine's classification of 4-component links up to link-homotopy, and go further with the classification of 5-component links in the algebraically split case.