论文标题

一类新的随机流程,具有巨大潜力用于有趣的应用

A new class of stochastic processes with great potential for interesting applications

论文作者

Obiang, Fulgence Eyi, Mbenangoya, Paule Joyce, MBA, Magloire Yorick Nguema, Moutsinga, Octave

论文摘要

本文有助于研究一个新的,杰出的随机过程家族,我们将其称为$σ^{r}(h)$。该类可能很有趣,因为它统一了两个已知类别的研究:类$(σ)$和$ \ Mathcal {m}(h)$。换句话说,我们认为将随机过程$ x $分解为$ x = m+v+a $,其中$ m $是本地的martingale,$ v $和$ a $是有限的变化过程,因此$ da $由$ \ \ \ {t \ geq0:x__ {x_ {t} = 0 \} $ of $ h MERT $ hers $ hers $ h,$ hers $ hers, $ D $。首先,我们引入了一个通用框架。因此,我们提供了一些新类元素的示例,并提供了一些属性。其次,我们提供一系列表征结果。之后,我们得出了一些表示结果,这些结果允许从其最终值和诚实的时间$ g = \ sup \ {t \ geq0:x_ {t} = 0 \} $和$γ= = \ sup {h} $中恢复$σ^{r}(h)$的过程。在最后,我们研究了一个有趣的应用程序,并使用目前研究的过程进行了研究。更确切地说,我们使用类$σ^{r}(h)$的随机过程构建偏斜运动方程的解决方案。

This paper contributes to the study of a new and remarkable family of stochastic processes that we will term class $Σ^{r}(H)$. This class is potentially interesting because it unifies the study of two known classes: the class $(Σ)$ and the class $\mathcal{M}(H)$. In other words, we consider the stochastic processes $X$ which decompose as $X=m+v+A$, where $m$ is a local martingale, $v$ and $A$ are finite variation processes such that $dA$ is carried by $\{t\geq0:X_{t}=0\}$ and the support of $dv$ is $H$, the set of zeros of some continuous martingale $D$. First, we introduce a general framework. Thus, we provide some examples of elements of the new class and present some properties. Second, we provide a series of characterization results. Afterwards, we derive some representation results which permit to recover a process of the class $Σ^{r}(H)$ from its final value and of the honest times $g=\sup\{t\geq0:X_{t}=0\}$ and $γ=\sup{H}$. In final, we investigate an interesting application with processes presently studied. More precisely, we construct solutions for skew Brownian motion equations using stochastic processes of the class $Σ^{r}(H)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源