论文标题
基于同质训练的神经台阶训练,以发现精确的动力学发现
Homotopy-based training of NeuralODEs for accurate dynamics discovery
论文作者
论文摘要
神经普通微分方程(神经台)提出了一种从时间序列数据中提取动力学定律的有吸引力的方法,因为它们会以基于微分方程的物理科学的基于微分方程的建模范式启动神经网络。但是,这些模型通常会显示较长的训练时间和次优的结果,尤其是在持续时间较长的数据中。虽然文献中的一种共同策略对神经模型架构施加了强大的限制来固有地促进稳定的模型动力学,但由于不确定的管理方程式不能保证满足假定的约束,因此这种方法不适合动态发现。在本文中,我们基于同步和同型优化开发了一种新的神经台词训练方法,该方法不需要更改模型体系结构。我们表明,同步模型动力学和训练数据驯服了最初不规则的损失格局,然后同型优化可以利用这些损失景观来增强训练。通过基准实验,我们证明我们的方法实现了竞争性或更好的训练损失,而与其他模型无关技术相比,训练时期的数量通常不到一半。此外,接受我们方法训练的模型显示出更好的外推能力,突出了我们方法的有效性。
Neural Ordinary Differential Equations (NeuralODEs) present an attractive way to extract dynamical laws from time series data, as they bridge neural networks with the differential equation-based modeling paradigm of the physical sciences. However, these models often display long training times and suboptimal results, especially for longer duration data. While a common strategy in the literature imposes strong constraints to the NeuralODE architecture to inherently promote stable model dynamics, such methods are ill-suited for dynamics discovery as the unknown governing equation is not guaranteed to satisfy the assumed constraints. In this paper, we develop a new training method for NeuralODEs, based on synchronization and homotopy optimization, that does not require changes to the model architecture. We show that synchronizing the model dynamics and the training data tames the originally irregular loss landscape, which homotopy optimization can then leverage to enhance training. Through benchmark experiments, we demonstrate our method achieves competitive or better training loss while often requiring less than half the number of training epochs compared to other model-agnostic techniques. Furthermore, models trained with our method display better extrapolation capabilities, highlighting the effectiveness of our method.