论文标题

通过联合加强学习,超密集的MMWave网络中的光束管理:一种智能和安全的方法

Beam Management in Ultra-dense mmWave Network via Federated Reinforcement Learning: An Intelligent and Secure Approach

论文作者

Xue, Qing, Liu, Yi-Jing, Sun, Yao, Wang, Jian, Yan, Li, Feng, Gang, Ma, Shaodan

论文摘要

部署在毫米波(MMWave)频段上运行的超密集网络是解决移动数据流量增长的巨大增长的一种有希望的方法。但是,由于较高的传播延迟,横梁覆盖率有限以及众多的横梁和用户,超密集的MMWave网络(UDMMN)的一个关键挑战是光束管理。在本文中,提出了一种新型的系统光束控制方案,以解决光束管理问题,这是由于非凸目标函数而困难的。我们在联合学习(FL)框架下采用双重Q-Network(DDQN)来解决上述优化问题,从而在UDMMN中实现了适应性和智能的光束管理。在基于FL(BMFL)的拟议的梁管理方案中,非摩擦汇总可以从理论上保护用户隐私,同时降低交接成本。此外,我们建议在BMFL的本地模型培训中采用数据清洁技术,以便在提高学习收敛速度的同时进一步增强用户的隐私保护。仿真结果证明了我们提出的方案的性能增长。

Deploying ultra-dense networks that operate on millimeter wave (mmWave) band is a promising way to address the tremendous growth on mobile data traffic. However, one key challenge of ultra-dense mmWave network (UDmmN) is beam management due to the high propagation delay, limited beam coverage as well as numerous beams and users. In this paper, a novel systematic beam control scheme is presented to tackle the beam management problem which is difficult due to the nonconvex objective function. We employ double deep Q-network (DDQN) under a federated learning (FL) framework to address the above optimization problem, and thereby fulfilling adaptive and intelligent beam management in UDmmN. In the proposed beam management scheme based on FL (BMFL), the non-rawdata aggregation can theoretically protect user privacy while reducing handoff cost. Moreover, we propose to adopt a data cleaning technique in the local model training for BMFL, with the aim to further strengthen the privacy protection of users while improving the learning convergence speed. Simulation results demonstrate the performance gain of our proposed scheme.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源