论文标题

Sublinear运算符的通勤者在HERZ Triebel-Lizorkin空间上的界限

The boundedness of commutators of sublinear operators on Herz Triebel-Lizorkin spaces with variable exponent

论文作者

Fang, Chenglong, Wei, Yingying, Zhang, Jing

论文摘要

在本文中,作者首先讨论了通过两个操作员家族的指数可变指数的HERZ Triebel-Lizorkin空间的表征。通过这种表征,作者证明了sublinear operators的Lipschitz换向器,从具有可变指数的HERZ空间界到具有可变指数的HERZ Triebel-Lizorkin空间。作为应用程序,建立了最大运算符,Riesz潜在操作员和Calderón-Zygmund运算符的相应有限性估计。

In this paper, the authors first discuss the characterization of Herz Triebel-Lizorkin spaces with variable exponent via two families of operators. By this characterization, the authors prove that the Lipschitz commutators of sublinear operators is bounded from Herz spaces with variable exponent to Herz Triebel-Lizorkin spaces with variable exponent. As an application, the corresponding boundedness estimates for the commutators of maximal operator, Riesz potential operator and Calderón-Zygmund operator are established.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源