论文标题

自动等效性和应用下的几何稳定性条件:椭圆表面

Geometric stability conditions under autoequivalences and applications: Elliptic Surfaces

论文作者

Lo, Jason, Martinez, Cristian

论文摘要

在Weierstrass椭圆表面上,我们描述了相对傅立叶 - 穆凯转换在$ \ mathrm {stab}(x)$的几何室中的作用,在K3情况下,我们还研究了对其边界组件之一的作用。使用Gieseker室的新估计值,我们证明了某些Friedman腔室极化的Gieseker稳定性由相对傅立叶木粉转换的派生双重保留。为了应用我们对动作的描述,我们还证明了Bridgeland可半固定物体的某些模量空间的预测性。

On a Weierstrass elliptic surface, we describe the action of the relative Fourier-Mukai transform on the geometric chamber of $\mathrm{Stab}(X)$, and in the K3 case we also study the action on one of its boundary components. Using new estimates for the Gieseker chamber we prove that Gieseker stability for polarizations on certain Friedman chamber is preserved by the derived dual of the relative Fourier-Mukai transform. As an application of our description of the action, we also prove projectivity for some moduli spaces of Bridgeland semistable objects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源