论文标题
关于算术一致性单体的分解不变。
On the factorization invariants of arithmetical congruence monoids
论文作者
论文摘要
在本文中,我们研究了算术一致性单体的各种分解不变。我们研究的不变性是链链型度,这是同一元素的任何两个因素之间的最大距离,长度密度的最大距离,它描述了元素的分解长度的分布以及欧米茄的原始性,该分数衡量了一个元素与素数的距离。
In this paper, we study various factorization invariants of arithmetical congruence monoids. The invariants we investigate are the catenary degree, a measure of the maximum distance between any two factorizations of the same element, the length density, which describes the distribution of the factorization lengths of an element, and the omega primality, which measures how far an element is from being prime.