论文标题
使用合成数据对RF传输学习行为的分析
An Analysis of RF Transfer Learning Behavior Using Synthetic Data
论文作者
论文摘要
转移学习(TL)技术利用从具有不同分布的数据获得的先验知识以实现更高的性能和减少的训练时间,通常用于计算机视觉(CV)和自然语言处理(NLP),但尚未在射频机器学习(RFML)领域中充分利用。这项工作系统地评估了射频频率(RF)TL行为如何通过研究以发射机/接收器硬件和通道环境为特征的训练域和任务,对示例自动调制分类(AMC)用例的影响RF TL性能。通过详尽的实验,使用仔细策划的合成数据集,具有不同的信号类型,信号噪声比(SNR)和频率偏移(FOS)(FOS),得出了有关如何最好地将RF TL技术用于域适应和顺序学习的广义结论。与其他模式中确定的趋势一致,结果表明,RF TL性能高度取决于源和目标域/任务之间的相似性。结果还讨论了通道环境,硬件变化以及域/任务难度对RF TL性能的影响,并使用头部重新训练和模型微调方法比较RF TL性能。
Transfer learning (TL) techniques, which leverage prior knowledge gained from data with different distributions to achieve higher performance and reduced training time, are often used in computer vision (CV) and natural language processing (NLP), but have yet to be fully utilized in the field of radio frequency machine learning (RFML). This work systematically evaluates how radio frequency (RF) TL behavior by examining how the training domain and task, characterized by the transmitter/receiver hardware and channel environment, impact RF TL performance for an example automatic modulation classification (AMC) use-case. Through exhaustive experimentation using carefully curated synthetic datasets with varying signal types, signal-to-noise ratios (SNRs), and frequency offsets (FOs), generalized conclusions are drawn regarding how best to use RF TL techniques for domain adaptation and sequential learning. Consistent with trends identified in other modalities, results show that RF TL performance is highly dependent on the similarity between the source and target domains/tasks. Results also discuss the impacts of channel environment, hardware variations, and domain/task difficulty on RF TL performance, and compare RF TL performance using head re-training and model fine-tuning methods.