论文标题
平衡相对简单复合物
On Equivariant flag $f$-vectors for balanced relative simplicial complexes
论文作者
论文摘要
我们研究了均衡的相对简单复合物相对于小组动作的均衡量$ f $ v $ v $ vector和Equivariant flag $ h $ - 矢量。当该综合体满足Serre的条件$(S _ {\ Ell})时,我们表明,Equivariant Flag $ h $ - vector,Equivariant $ h $ - vector和ecurivariant $ f $ - 向量 - 使几个不等式满足。 我们将这些结果应用于对双posets的$ p $ - 分区以及混合图的薄色。
We study the equivariant flag $f$-vector and equivariant flag $h$-vector of a balanced relative simplicial complex with respect to a group action. When the complex satisfies Serre's condition $(S_{\ell}),$ we show that the equivariant flag $h$-vector, the equivariant $h$-vector, and the equivariant $f$-vector satisfy several inequalities. We apply these results to the study of $P$-partitions of double posets, and weak colorings of mixed graphs.