论文标题

预算感知的顺序砖组件具有有效的约束满意度

Budget-Aware Sequential Brick Assembly with Efficient Constraint Satisfaction

论文作者

Ahn, Seokjun, Kim, Jungtaek, Cho, Minsu, Park, Jaesik

论文摘要

我们用乐高积木解决了连续砖组件的问题,以创建组合3D结构。这个问题很具有挑战性,因为这项砖组装任务涵盖了组合优化问题的特征。特别是,随着所使用的砖块的增加,组合结构的数量会呈指数增加。为了解决这个问题,我们提出了一种新方法,通过采用U形稀疏的3D卷积神经网络来预测下一个砖头位置的得分。与3D卷积网络一起,使用单次砖尺寸的卷积过滤器,用于在没有训练的情况下有效验证砖之间的装配约束。根据这种单位化的卷积过滤器的性质,我们可以通过从现代的卷积操作实施中受益,轻松考虑几种不同的砖头类型。为了产生一种新颖的结构,我们设计了一种抽样策略,以确定考虑组装约束满意的下一个砖头位置。此外,我们的方法是为无预算或预算意识的方案而设计的,在该方案中,预算可能会限制砖块及其类型的数量。我们证明,我们的方法成功地生成了各种砖结构,并以贝叶斯优化,深图生成模型和增强学习的方式优于现有方法。

We tackle the problem of sequential brick assembly with LEGO bricks to create combinatorial 3D structures. This problem is challenging since this brick assembly task encompasses the characteristics of combinatorial optimization problems. In particular, the number of assemblable structures increases exponentially as the number of bricks used increases. To solve this problem, we propose a new method to predict the scores of the next brick position by employing a U-shaped sparse 3D convolutional neural network. Along with the 3D convolutional network, a one-initialized brick-sized convolution filter is used to efficiently validate assembly constraints between bricks without training itself. By the nature of this one-initialized convolution filter, we can readily consider several different brick types by benefiting from modern implementation of convolution operations. To generate a novel structure, we devise a sampling strategy to determine the next brick position considering the satisfaction of assembly constraints. Moreover, our method is designed for either budget-free or budget-aware scenario where a budget may confine the number of bricks and their types. We demonstrate that our method successfully generates a variety of brick structures and outperforms existing methods with Bayesian optimization, deep graph generative model, and reinforcement learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源