论文标题
在预测大型多环芳烃的中边缘光谱时进行的探测计算方法论
Probing computational methodologies in predicting mid-infrared spectra for large polycyclic aromatic hydrocarbons
论文作者
论文摘要
我们通过评估几种计算化学方法的效率,将振动光谱的预测扩展到大尺寸的多环烃(PAH)分子。我们采用经典的力学方法(Amber和GAFF),具有改进的原子点电荷,半经验(PM3和密度功能紧密结合)以及密度功能理论(B3LYP),并进行全局优化和频率计算,以研究PAH大小对振动带位置的影响。我们主要关注以下中红外发射带3.3、6.2、7.7、8.6、11.3、12.7和17.0微米。我们开发了一个通用频率缩放函数(FSF),以移动频带并提供系统的比较与每个PAH的三种方法。我们首先通过从NASA AMES PAH数据库中验证IR缩放光谱的该过程,并将其扩展到新的大PAHS。我们表明,当将FSF应用于琥珀色和GAFF IR光谱时,正常模式峰位置与从B3LYP/4-31G模型化学推断的位置之间的一致性。随着计算对于大尺寸分子NC> 450的计算,该方法具有优势。 FSF已使调查能够将研究扩展到大型PAH,我们清楚地看到了17.0微米特征的出现,以及3.3微米的弱点。我们最终研究了3.3微米17.0微米PAH带比的趋势,这是PAH大小的函数及其在暴露于不同辐射强度磁场后的响应。
We extend the prediction of vibrational spectra to large sized polycyclic aromatic hydrocarbon (PAH) molecules comprising up to \sim 1500 carbon atoms by evaluating the efficiency of several computational chemistry methodologies. We employ classical mechanics methods (Amber and Gaff) with improved atomic point charges, semi-empirical (PM3, and density functional tight binding), and density functional theory (B3LYP) and conduct global optimizations and frequency calculations in order to investigate the impact of PAH size on the vibrational band positions. We primarily focus on the following mid-infrared emission bands 3.3, 6.2, 7.7, 8.6, 11.3, 12.7, and 17.0 microns. We developed a general Frequency Scaling Function (FSF) to shift the bands and to provide a systematic comparison versus the three methods for each PAH. We first validate this procedure on IR scaled spectra from the NASA Ames PAH Database, and extend it to new large PAHs. We show that when the FSF is applied to the Amber and Gaff IR spectra, an agreement between the normal mode peak positions with those inferred from the B3LYP/4-31G model chemistry is achieved. As calculations become time intensive for large sized molecules Nc > 450, this proposed methodology has advantages. The FSF has enabled extending the investigations to large PAHs where we clearly see the emergence of the 17.0 microns feature, and the weakening of the 3.3 microns one. We finally investigate the trends in the 3.3 microns 17.0 microns PAH band ratio as a function of PAH size and its response following the exposure to fields of varying radiation intensities.