论文标题

关于在不断发展的原球盘中卵石胶囊的演变

On the evolution of pebble-accreting planets in evolving protoplanetary discs

论文作者

Pierens, Arnaud

论文摘要

我们检查了层状原球圆盘中发光的低质量核的迁移,在该圆盘中,积聚的主要是由于圆盘风和卵石积聚产生的行星光度。使用2D流体动力学模拟,我们确定热力诱导的偏心率是气体和卵石积聚率的函数,还评估了固体成分相对于气体扭矩施加的扭矩的重要性。对于气体吸积率$ \ dot m = 2 \ times 10^{ - 8} $ $ $ m_ \ odot/$ yr和pebble flux $ \ dot m_ {peb} = 170 $ $ $ $ m_ \ m_ \ oplus $/myr,我们发现embryo centryo centryities值得与圆盘上的exception coptio combotio cobio cobio coptio相比。然而,圆盘中的行星径向游览会导致流动卵石平均取消并从向外过渡到向外迁移而施加的扭矩。之所以发现这是因为热扭矩的幅度随着偏心率的增加而指数下降,并且我们为热扭矩衰减提供了拟合公式,这是偏心率的函数。随着圆盘的发展,积聚的光度在某个时候变得太小,无法使核心偏心率生长,从而使固体成分可以在行星上施加非零扭矩。 This torque is positive and for gas accretion rates $\dot M \lesssim 5\times 10^{-9}$ $M_\odot/$yr and pebble fluxes $\dot M_{peb} \lesssim 120$ $M_\oplus/$Myr, it is found to overcome the gas torque exerted on cores with mass $m_p\lesssim$ $ 1M_ \ oplus $,导致向外迁移。

We examine the migration of luminous low-mass cores in laminar protoplanetary discs where accretion occurs mainly because of disc winds and where the planet luminosity is generated by pebble accretion. Using 2D hydrodynamical simulations, we determine the eccentricities induced by thermal forces as a function of gas and pebble accretion rates, and also evaluate the importance of the torque exerted by the solid component relative to the gas torque. For a gas accretion rate $\dot M= 2\times 10^{-8}$ $M_\odot/$yr and pebble flux $\dot M_{peb}=170$ $M_\oplus$/Myr, we find that embryo eccentricities attain values comparable to the disc aspect ratio. The planet radial excursion in the disc, however, causes the torque exerted by inflowing pebbles to cancel on average and migration to transition from outward to inward. This is found to arise because the magnitude of thermal torques decreases exponentially with increasing eccentricity, and we provide a fitting formula for the thermal torque attenuation as a function of eccentricity. As the disc evolves, the accretion luminosity becomes at some point too small to make the core eccentricity grow such that the solid component can exert a non-zero torque on the planet. This torque is positive and for gas accretion rates $\dot M \lesssim 5\times 10^{-9}$ $M_\odot/$yr and pebble fluxes $\dot M_{peb} \lesssim 120$ $M_\oplus/$Myr, it is found to overcome the gas torque exerted on cores with mass $m_p\lesssim$ $1M_\oplus$, resulting in outward migration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源