论文标题

填充织物:基于图像的虚拟试验的身体感知的自我监视的插图

Fill in Fabrics: Body-Aware Self-Supervised Inpainting for Image-Based Virtual Try-On

论文作者

Zunair, H., Gobeil, Y., Mercier, S., Hamza, A. Ben

论文摘要

以前的虚拟试验方法通常着重于将衣服物品与一个人保持一致,限制了他们利用人物的姿势,形状和肤色的能力,以及服装的整体结构,这对于光真实的虚拟尝试至关重要。为了解决这种潜在的弱点,我们提出了一个填充织物(FIFA)模型,这是一种基于制造商和统一的虚拟试验管道,带有分段器,Warper和Fuser的统一的虚拟尝试管道。该制造商的目的是在提供蒙面衣服作为输入时重建服装图像,并通过填充织物来了解衣服的整体结构。然后,通过将学习的表示形式从制造商转移到战者,以弯曲和完善目标服装来训练虚拟的试管管道。我们还建议使用多尺度的结构约束来在多个尺度上执行全球环境,同时扭曲目标服装以更好地适应人的姿势和形状。广泛的实验表明,我们的FIFA模型可在标准的Viton数据集上实现最先进的服装项目,以实现服装的虚拟尝试,并且显示出有效地处理复合姿势并保留服装的质地和刺绣。

Previous virtual try-on methods usually focus on aligning a clothing item with a person, limiting their ability to exploit the complex pose, shape and skin color of the person, as well as the overall structure of the clothing, which is vital to photo-realistic virtual try-on. To address this potential weakness, we propose a fill in fabrics (FIFA) model, a self-supervised conditional generative adversarial network based framework comprised of a Fabricator and a unified virtual try-on pipeline with a Segmenter, Warper and Fuser. The Fabricator aims to reconstruct the clothing image when provided with a masked clothing as input, and learns the overall structure of the clothing by filling in fabrics. A virtual try-on pipeline is then trained by transferring the learned representations from the Fabricator to Warper in an effort to warp and refine the target clothing. We also propose to use a multi-scale structural constraint to enforce global context at multiple scales while warping the target clothing to better fit the pose and shape of the person. Extensive experiments demonstrate that our FIFA model achieves state-of-the-art results on the standard VITON dataset for virtual try-on of clothing items, and is shown to be effective at handling complex poses and retaining the texture and embroidery of the clothing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源